Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Soft comput ; 27(14): 9941-9954, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20240805

RESUMEN

Transferring of data in machine learning from one party to another party is one of the issues that has been in existence since the development of technology. Health care data collection using machine learning techniques can lead to privacy issues which cause disturbances among the parties and reduces the possibility to work with either of the parties. Since centralized way of information transfer between two parties can be limited and risky as they are connected using machine learning, this factor motivated us to use the decentralized way where there is no connection but model transfer between both parties will be in process through a federated way. The purpose of this research is to investigate a model transfer between a user and the client(s) in an organization using federated learning techniques and reward the client(s) for their efforts with tokens accordingly using blockchain technology. In this research, the user shares a model to organizations that are willing to volunteer their service to provide help to the user. The model is trained and transferred among the user and the clients in the organizations in a privacy preserving way. In this research, we found that the process of model transfer between user and the volunteered organizations works completely fine with the help of federated learning techniques and the client(s) is/are rewarded with tokens for their efforts. We used the COVID-19 dataset to test the federation process, which yielded individual results of 88% for contributor a, 85% for contributor b, and 74% for contributor c. When using the FedAvg algorithm, we were able to achieve a total accuracy of 82%.

2.
Comput Biol Chem ; 102: 107808, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2165189

RESUMEN

The number of biomedical articles published is increasing rapidly over the years. Currently there are about 30 million articles in PubMed and over 25 million mentions in Medline. Among these fundamentals, Biomedical Named Entity Recognition (BioNER) and Biomedical Relation Extraction (BioRE) are the most essential in analysing the literature. In the biomedical domain, Knowledge Graph is used to visualize the relationships between various entities such as proteins, chemicals and diseases. Scientific publications have increased dramatically as a result of the search for treatments and potential cures for the new Coronavirus, but efficiently analysing, integrating, and utilising related sources of information remains a difficulty. In order to effectively combat the disease during pandemics like COVID-19, literature must be used quickly and effectively. In this paper, we introduced a fully automated framework consists of BERT-BiLSTM, Knowledge graph, and Representation Learning model to extract the top diseases, chemicals, and proteins related to COVID-19 from the literature. The proposed framework uses Named Entity Recognition models for disease recognition, chemical recognition, and protein recognition. Then the system uses the Chemical - Disease Relation Extraction and Chemical - Protein Relation Extraction models. And the system extracts the entities and relations from the CORD-19 dataset using the models. The system then creates a Knowledge Graph for the extracted relations and entities. The system performs Representation Learning on this KG to get the embeddings of all entities and get the top related diseases, chemicals, and proteins with respect to COVID-19.


Asunto(s)
COVID-19 , Reconocimiento de Normas Patrones Automatizadas , Humanos , Minería de Datos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA